https://www.thunderbolts.info/wp/2014/11/25/lightning-in-the-wind-2/
Electric fields freely accelerate charged particles, which move outward in opposite directions, activating an electric current that follows the Sun’s magnetic field. That field is carried into Earth’s electrical environment along gigantic Birkeland current filaments. It was reported elsewhere that in September 2002 a major premise of Electric Universe theory was confirmed: weather systems on Earth are electrically connected to a field of charged particles called the ionosphere. Dual bands of plasma shining in ultraviolet light were found by the
IMAGE satellite. The plasma streams are circling the Earth in opposite directions along the equator, carrying positive and negative electric charges.
Along with that observation, the Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellites found what were called “space tornadoes” (Birkeland currents), electrified plasma vortices rotating faster than 1,600,000 kilometers per hour, about 64,000 kilometers from Earth. The THEMIS satellites, together with Earth-based stations, verified that those charged plasma formations are connected to the ionosphere. This means that the Sun is directly coupled to lightning generators on Earth—otherwise called thunderstorms.
As previously written, the capacitor effect is probably what contributes to lightning discharges. Capacitors are usually made of two conductors separated by an insulating medium, or dielectric insulator. An electric charge on one conductor attracts an opposite charge to the other conductor, resulting in an electric field between them that acts as an electrical energy reserve. Thunderstorms are most likely behaving like capacitors: the clouds are one plate, the ground another, and the atmosphere is the dielectric insulator.
Since the clouds are connected to the ionosphere, electric charges carried into the ionosphere by the solar wind cause increases in the electrical energy in the clouds, which also increases the stored charge in the ground. That accumulated charge overcomes the atmosphere’s ability to keep the two separate, so they reach out to each other in the form of “leader strokes.” When the two lightning leaders meet, a circuit between the clouds and the ground (or between one cloud and another) is completed: lightning flashes.